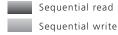


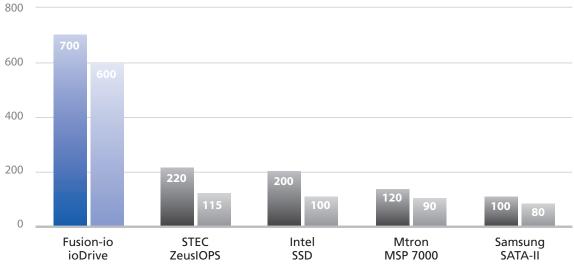
The performance of a SAN in the palm of your hand.

The world of storage is no longer just about capacity, it's now also about the need for extremely fast and reliable access to data. The ever increasing demand on today's servers combined with the exponential growth of processor performance, has exposed the limitations of today's aging storage architectures. The time has come for a truly innovative solution that takes enterprise data availability, scalability and access rates to a new level of simplicity and performance, without sacrifices.

Designed around a revolutionary silicon-based storage architecture known as ioMemory, the ioDrive is the world's most advanced NAND clustering technology with performance comparable to DRAM and storage capacity on par with today's hard disks — giving you the power to improve both memory capacity and storage performance a thousand fold. The ioDrive unleashes such a dramatic performance increase that every server can easily contain the I/O performance of the world's fastest enterprise SAN.

With sustained, random access rates hundreds of times faster than the industry's fastest storage devices, it's no question the ioDrive is the industry leader in data acceleration technology. With 1000x the I/O performance, while only using 1% of the power required by any of today's other high performance storage solutions, the ioDrive in a league of it's own.


The ioDrive unlocks a world of possibilities for I/O bound servers and the applications that drive them, ultimately giving end users the power to innovate the next generation data centers.


KEY APPLICATIONS

- Virtualization
 - > Host 4x more virtual machines
 - > Avoid service interrupts due to I/O contention
 - > Save or resume virtual machine states in seconds
- Transaction Processing:
 - > 100x faster response time
 - > 10x the transactions per second
- Content Caching/Serving
 - > Host and Serve 10x the content per server
 - > Terabytes of Virtual Memory with near DRAM speeds
- Media Handling
 - > Serve 10x more streams
 - > No more waiting for loads and saves
 - > Edit multiple high definition streams in real time

Performance Comparison

FUSION · ioDRIVE (PRELIMINARY)

Capacities (GB)	80	160	320
Write BW (Mbytes/s)	600		
Read BW (Mbytes/s)	700		
IOPS**	125,000 (sustained 1k random)		
	100,000 (sustained 4k random)		
Access Latency	50μs Read 40μs Write		
Bus Interface	PCI-Express x4		
Form Factor	Low profile PCI-e card		
Weight	Less than 2 ounces		
Operating Systems*	RHEL 4 & 5; SLES 9 & 10		
Wear Leveling (Constant 7 x 24 writes)	4yrs	8yrs	8yrs

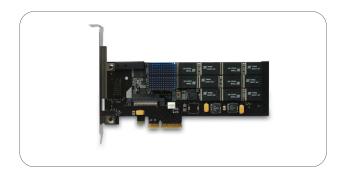
^{*} Microsft Windows XP, Vista, Server 2003 & 2008; Mac OS X Available second half 2008

ENVIRONMENTAL SPECIFICATIONS

		Min	Nominal	Max
Power (W)			6	~9
3V Input	Voltage (V)	3.0	3.3	3.6
	Current (A)		1.5	2.0
12V Input	Voltage (V)	11.0	12.0	20.0
	Current (A)		0.5	0.9
Temperature (°C)*	Operational	0		55
	Non-operational	- 40		70
Air Flow (LFM)		300		
Humidity (%)	Non-condensing	5		95
Altitude (ft)	Operational			10,000
	Non-operational			30,000

^{*} Temperate derated 1 C per 1000 ft elevation above sea level

STANDARDS


Form Factor	PCI Express base spec 1.0a	
Connectivity	PCI Express x4 (electromechanical spec 1.0a)	

SAFETY

US / Canada	UL60950, CSA C22.2 No.60950-1-03
Europe	TUV EN60950-1:2001; 3N50825-1:

AGENCY

US / Canada	FCC Part 15, ICES-003, Class A	
Europe	2004/108/EC EMC Directive CE Mark;	
Japan	VCCI, Class A	
Taiwan	BSMI, Class A	
New Zealand /Australia	AS/NZS 3548 Class A	
RoHS	R5 (Directive 2002/95/EC)	

^{**} Virtual Memory page size is 4K