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SUMMARY

Flash memory based SSDs offer several attractive features and benefits compared to hard disk drive
(HDD), such as shock resistance, better performance especially for random data access, etc. Depending
on the number of bits in each cell, Flash memory can be designed as single/multi/triple level cell
(SLC/MLC/TLC) which have different performance, density, cost and write endurance characteristics. To
bring the best of these together, several researchers have proposed designing solid state drive (SSD) using
hybrid SLC/MLC/TLC Flash memory. However, these SSDs also present several challenges such as buffer
management, placement of hot/cold data in suitable portion, intelligent garbage collection, etc. Several
recent techniques aim to address these challenges. In this paper, we present a survey of techniques for
managing SSDs designed with SLC/MLC/TLC Flash memory. We classify the works on several axes to
bring out their similarities and differences. We aim to synthesize the state-of-art progress in hybrid SSD
management and also spark further research in this area. Copyright c© 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

As the amount of digital data continues to grow at an exponential rate and key applications become
more data-intensive, efficient storage architectures and management techniques have become more
important than ever before. Conventionally, hard disk drive† has been used as a storage device,
however, its limitations such as poor performance (especially for random accesses), higher form
factor, vulnerability to shocks and magnetic fields, etc. have encouraged researchers to explore its
alternatives.

∗Correspondence to: Ahmed and Sparsh are co-first authors. Authors’ addresses: A. I. Alsalibi (corresponding author),
Information Systems College, Israa university, Gaza-Palestine; Sparsh Mittal, IIT Hyderabad, India; P. B. Sumari,
School of Computer Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia; M. A. Al-Betar, Department of
Information Technology, Al-Balqa Applied University. Emails: ahmed.salibi@gmail.com, sparsh0mittal@gmail.com,
putras@usm.my, betar79@gmail.com. Support for this work was provided by Science and Engineering Research Board
(SERB), India, award number ECR/2017/000622.
†We use the following acronyms frequently in this paper: error-correcting code (ECC), flash translation layer (FTL),
garbage collection (GC), global positioning system (GPS), least/most recently used (LRU/MRU), least/most significant
bit (LSB/MSB), logical page address/number (LPA/LPN), logical sector number (LSN), logical/physical superblock
address (LSBA/PSBA), non-volatile RAM (NVRAM), phase change memory (PCM), physical page address/number
(PPA/PPN), resistive random-access memory (ReRAM), service-level objective (SLO), spin transfer torque RAM (STT-
RAM), storage-class memory (SCM), universal serial bus (USB). We use both SCM and NVRAM to refer to byte-
addressable non-volatile memories, viz., PCM, domain wall memory, ReRAM and STT-RAM [1].
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Flash memory is a promising technology for designing storage devices due to its several attractive
properties, e.g., high performance and density, low power consumption, noise-free operation and
immunity to shocks and magnetic fields [2–6]. Also, its cost has been decreasing in recent years and
it is expected to provide even better cost efficiency than HDD in near future. Based on the number
of bits stored in each cell, Flash can be characterized as SLC (1 bit), MLC‡ (2 bit) and TLC (3 bits).
As shown in Table I, these cell-types provide a spectrum of properties and tradeoffs. Specifically, on
going from SLC to MLC to TLC, the performance and write endurance decrease whereas density
and cost efficiency improve.

Table I. Comparison of SLC/MLC/TLC Flash memories.[10–15] (out-of-band size is not shown for clarity)

Features SLC MLC TLC
Bits/cell 1 2 3
Cost High Medium Low
Page size 2,048 bytes 16,384 bytes 16,384 bytes
Pages per
block

64 1024 1536

Block size 128K bytes 16,384K bytes 24,576K bytes
Page read 25 µs 50 µs 75 µs
Program time 200-300 µs 600-900 µs 900-1350 µs
Block erase 1.5-2 ms 3 ms 4.5-10 ms
P/E cycles 100,000 3,000-10,000 300-3,000

Application
USB, SSD, digital

camera, mobile handset &
networking

USB, SSD, media player,
digital camera, mobile

handset & GPS

USB, SSD, media player
& mobile GPS

To achieve the best of these three cell-types, hybrid SSD designs have been proposed which use
Flash memories of multiple cell-types to improve performance, energy efficiency and reliability
[16]. However, these hybrid SSD designs also bring challenges, such as selection of relative
proportion of SLC/MLC/TLC, efficient mapping/moving of hot/cold data to them, accounting for
their disparate write endurance and density values, ensuring efficient GC, etc. Clearly, management
of hybrid SSDs brings challenges of its own and hence traditional techniques for managing
homogeneous (e.g., MLC-only) SSD may not work well for hybrid SSDs. Recently, several
techniques have been proposed to address these challenges.

Contributions: In this paper, we present a survey of techniques for designing and managing
hybrid SSD devices. Figure 1 shows the overall organization of this paper. We first present a brief
background on Flash memory architecture, operations and SSD management approaches (Section
2). We then provide classification of research works from multiple perspectives to offer insights
(Section 3). Then, we review hybrid SSD management techniques in terms of their partitioning
techniques (Section 4), buffer design (Section 5) and optimization objective and solution schemes
(Section 6). In these sections, we discuss each research work in one group only, although many
of the works fall under multiple groups. We conclude this paper with a mention of future research
directions in this field (Section 7).

Scope: For sake of a concise presentation, we limit the scope of this paper as follows. We focus
on software-level management techniques for hybrid SSDs and not their circuit-level design issues.
We include techniques which use at least two types of Flash and not those that merely use an SCM
with a Flash cell-type. We focus on the key ideas of each work and include only selected quantitative
results, since different works use disparate evaluation platforms and workloads. We hope that this
paper will be useful for computer architects, SSD designers and researchers in the area of storage
architectures.

‡Note that the term MLC is also sometimes used to refer to Flash cell with multiple (two or more) levels per cell which
includes TLC [7–9], however, in this paper, we use MLC to refer to Flash with 2 bits per cell only.
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Figure 1. Paper organization

2. BACKGROUND

2.1. Flash memory architecture and operations

We now briefly review the organization of SSD and Flash memory and refer the reader to prior
works [17, 18] for more details.

Flash SSD architecture: An SSD has multiple packages, each consisting of one or more chip
dies. Each die consists of multiple planes which has several blocks. Further, each block has multiple
pages, e.g., the size of a page and a block may be 4KB and 256KB, respectively [19]. Each page is
logically divided into a large ‘user area’ which stores the user data and a small ‘out-of-band’ area
which stores mapping information, metadata (e.g., erase counter and page state) and ECC [20, 21].

Flash memory operations: Flash memory allows program (write), read, and erase operations,
which are managed by the FTL [22]. Reads/writes happen at page granularity whereas erase happens
at block granularity. A write operation can only change the stored-bits from 1 to 0. Hence, the only
way to change a bit in a page from 0 to 1 is to erase the block containing the page which sets all bits
in the block to 1. The pages in Flash are classified as free (available for storing new data), invalid
(storing dead data) and valid.

Garbage collection and wear-leveling: Since erase operations are much slower than write
operations, FTL seeks to hide erase latency by performing ‘out-of-place’ writes whereby a new
write is performed to a free page and the previous location of the page is invalidated [2]. To release
invalid pages, FTL periodically performs garbage collection whereby the valid pages of a block
are copied elsewhere; the block is erased and all its pages are marked as free. By performing erase
operations in background, FTL hides the erase operations and exposes only read/write operations
to the user. Since Flash write endurance is small, the wear-leveling module seeks to distribute the
number of program/erase cycles evenly among all the blocks to increase overall device lifetime [23].

Address translation: The address translation software records the mapping between logical
addresses in the file system to physical addresses in Flash memory. Since writes to Flash
are performed ‘out-of-place’, the address mapping between file system and Flash memory is
continuously updated.

2.2. Hybrid SSD design and management techniques

2.2.1. Hybrid SSD design: A hybrid SSD (with hard-partitioning) is designed by connecting
SLC/MLC/TLC chips over different channels. Figure 2 shows a generic hybrid SSD design.

2.2.2. Hybrid SSD partitioning techniques Hybrid SSDs may use either hard or soft partitioning.
We discuss them with example of an SLC/MLC hybrid SSD.

Hard partitioning: In hard partitioning, SLC and MLC chips are physically separated. A
particular chip continues to work as SLC or MLC during entire the execution time and thus, there is
no mode switching or change in their capacity. For example, in Figure 3(a), 3 SLC and 9 MLC chips

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe



4 A. ALSALIBI ET AL.

SLC

SLC

TLC TLC

TLCTLC

SLC

SLC

TLC

TLC

SLC

SLC

SLC

SLC

MLC MLC

MLCMLC

MLC MLC

MLCMLC

TLC TLC

TLCTLC

TLC

TLC

FTL

Wear 

leveling

Garbage 

collection

Address 

translation
C1 C2 C3

Storage controller

Figure 2. A generic hybrid SSD architecture. C1/C2/C3 refers to channels 1, 2 and 3, respectively [18, 24]

are used. Assuming that the SLC and MLC portions are used as the buffer and data, respectively,
the buffer write traffic (e.g., random writes) is mapped entirely to the SLC chips and the data write
traffic (e.g., sequential writes) is mapped entirely to the MLC chips. However, due to this, SLC chip
may reach the end of its lifetime very soon (as shown by the dotted red line) even though MLC chip
can sustain more writes.
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Figure 3. (a) Hard partitioning (SLC and MLC chips are physically separated. Mapping of random writes to
SLC can lead to its early wear-out) (b) Soft partitioning (Only MLC blocks are used, some of which can be

selectively programmed as SLC to improve performance and achieve wear-leveling) [25]

Soft partitioning: Soft partitioning works on the observation that for writing MLC, first LSB
and then MSB needs to be programmed and writing MSB takes 4-5× higher latency than writing
LSB. However, if only the LSB of MLC is written, the write performance becomes close to that of
SLC at the cost of lower capacity [25]. Thus, MLC blocks can be selectively written as SLC blocks
which keeps performance close to that of SLC [26]. For example, in Figure 3(b), 12 MLC chips are
used. At any time, some of these chips may be programmed in SLC mode and thus, they exhibit
SLC properties. At different times, different chips may be used as SLC, but the total number of SLC
chips at anytime is fixed. The buffer write traffic is now more uniformly spread and thus, the device
lifetime is increased due to wear-leveling. The SLC mode switching is also termed as dynamic write
acceleration [27].

Table II compares the properties of these techniques. It is clear that soft partitioning scheme
provides higher flexibility and device lifetime. Due to this, soft partitioning based techniques are
increasingly being used in real systems [27, 28] compared to the hard partitioning techniques.

Buffer design techniques: Flash memory is generally divided into a small log-buffer portion
and a large data-portion. Buffer portion handles hot/random writes, which are written-back to data
portion at large granularity to reduce the number of write operations. Since hot writes constitute a
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Table II. A comparative evaluation of hard and soft partitioning techniques

Hard (+) Improves performance and lifetime. Allows separate addressing and
management of SLC and MLC chips.
(-) Despite higher endurance of SLC, use of it as a buffer may lead to its
early wear-out, degrading device lifetime. To avoid this, SLC partition ratio
needs to be kept high (e.g., ∼10%-30% [7]) which increases SSD cost and
requires maintaining huge address translation table.

Soft (+) Allows higher buffer bandwidth since multiple channels and even
multiple interleaved chips can be concurrently accessed to write to the buffer.
Allows flexible tradeoff between buffer capacity, write performance and
device lifetime (since SLC writes are less damaging to the Flash than MLC
writes). Faster writes allow the device to spend higher time in a low-power
state. Allows handling evictions from buffer on-chip without requiring off-
chip migration.
(-) Due to different capacity of SLC and MLC, a mode-switch complicates
addressing mechanism. Converting large fraction of blocks to SLC reduces
device capacity drastically and hence, after a point, the device has to
switch back to MLC which reduces speed and bandwidth. Also, MLC-
turned SLC region may not be as optimized as an SLC chip. Further,
program/erase operations of different modes complicate the design and
operation of program-erase controller.

Table III. A comparative evaluation of different buffer design approaches

SLC (+) Improves performance and lifetime
(-) Increases SSD cost and area due to low density of SLC, can degrade SLC
lifetime (refer Figure 3). Once SLC wears, future writes are redirected to
MLC which harms performance

MLC (+) Improves density and lowers cost
(-) Lowers lifetime due to small write endurance of MLC

DRAM or
SCM

(+) Improves performance and lifetime; bridges speed-gap between memory
and storage [29]. Allows performing reads/writes in near-constant time
regardless of the location of data inside memory. SCMs do not require erase
operations and have much higher endurance than Flash memory [30, 31]. The
latency of SCMs is in the range of DRAM latency, whereas their leakage
power consumption is near-zero (since only peripheral circuit consumes
leakage power).
(-) Increases cost; no crash consistency on using DRAM; SCMs are not very
mature and not available in large capacity

large fraction of writes, most writes are directed to buffer partition and hence, intelligent choice of
memory technology for designing the buffer is important in hybrid SSDs. Table III summarizes the
advantages/disadvantages of different buffer design approaches.

Mapping techniques: The hybrid SSD management techniques can also be classified based on
the granularity of mapping. Page-level mapping allows direct mapping of any logical page to any
physical page in the Flash memory. Block-level mapping approach stores the logical to physical
address translation information at the granularity of each block [18, 32]. Further, multiple hybrid-
level mapping schemes have been proposed which use some combination of page and block level
mapping schemes. For example, when Flash memory is divided into a large data portion and a small
log-buffer portion [8, 33, 34], hybrid-level mapping may use block-level mapping for data portion
and page-level mapping for log-buffer portion. Random/hot writes to log-buffer benefit from the
fine-grained page-level mapping and sequential/cold writes benefit from the coarse-grain block-level
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Table IV. A comparative evaluation of different mapping schemes

Page-level (+) This provides high performance and lifetime and also facilitates flexible
separation of hot and cold data [35, 36].
(-) Requires large address translation table. Since this table is stored in
SRAM which has poor density, the overall area overhead is increased. GC
needs to be performed in background which leads to variable write latencies.

Block-level (+) Reduces the size of translation table
(-) Does not allow fine-grain separation of hot/cold data [37]. Also, due to
the requirement of maintaining equal offset of logical and physical block, on
a write to a page in the block, all valid pages of this block need to be copied
to a free block.

Hybrid-level (+) Mitigates ‘erase-before-write’ issue with lower memory requirement
than the page-mapping table [8, 38]
(-) Requires maintaining both block and page-level mapping tables, leading
to higher storage overhead. Block-merge operation leads to multiple erase
and write operations.

Page-level
and block-
level

Its advantages/disadvantages are similar to those of page and block-level
schemes discussed above.

mapping. Finally, some techniques use page-level and block-level mapping schemes for SLC and
MLC portions, respectively. In case where SLC and MLC are used as log-buffer and data partitions,
respectively, this mapping becomes same as the hybrid-level mapping described above. Table IV
compares the properties of these techniques. Note that the page-level mapping is the most widely
used mapping strategy in the industry, since in practice, other strategies provide small improvement
and/or incur large overheads.

3. CLASSIFICATION AND OVERVIEW

In this section, we classify the research works based on several parameters.

3.1. Based on hybrid SSD and buffer design

Table V classifies the works based on the Flash cells used in hybrid SSD design and memory/cell
used for designing the buffer. Note that the techniques proposed for SLC+MLC hybrid SSD may
also be applicable to SLC+TLC SSD, however, in Table V, we mention a technique in the category
for which it was originally evaluated. While most techniques use SLC or MLC as buffer, some
techniques use other memories such as SCM or DRAM as a buffer.

3.2. Based on optimization goal and evaluation platform

Table VI classifies the works based on optimization metric and it is clear that the techniques
proposed are guided by multiple optimization goals which need to be carefully balanced.

The choice of the platform for evaluating hybrid SSD techniques is crucially important. While
simulators provide high flexibility to test even those designs which may be currently infeasible to
implement, they may be too slow to allow full exploration of the design-space. By comparison,
real-systems allow more accurate evaluation and due to their fast speed, they allow executing larger
number of instructions. Clearly, both these platforms are vital for evaluating the proposed techniques
and provide complementary insights. For this reason, Table VI also classifies the works based on
their evaluation platform.
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Table V. Classification based on hybrid SSD architecture and mapping technique

Category References
Hybrid SSD architecture

SLC+TLC [10, 39]
MLC+TLC [24, 40]
TLC + (SLC or MLC) [36]
SLC+MLC Nearly all other works discussed in this survey

Mapping technique
Page-level [35, 36]
Block-level [18, 32]
Page-level and block level [10, 38, 41–44]
Hybrid-level [7, 8, 25, 33, 34]

Table VI. Classification based on optimization metric and evaluation platform

Category

References

Optimization metric
Performance [9, 10, 15, 18, 24, 34–36, 38–48]
Energy consumption [7, 18, 40, 42, 47]
Lifetime [7–10, 25, 32–36, 41–43, 45, 48–50]

Evaluation platform
Both simulator and real
system

[25, 48]

Real-system/prototype [44]
Simulator nearly all others

3.3. Key ideas of different techniques

We now discuss some key ideas which are used in different techniques discussed in the survey.

1. Most works classify the data or write operations as hot or cold depending on length of write
requests or random/sequential nature [8, 10, 15, 18, 24, 34, 35, 38, 41, 45, 47, 51] or access
frequency [8, 45] to store them to different memory cells. Also, pages belonging to metadata
can be directly marked as hot [15]. Other works classify the data as user data or ECC data
[32] and write or read-intensive [39, 46]. Also, data may be stored in SLC or MLC based on
performance/deadline [9] and instantaneous wear [18] considerations.

2. Several works discuss strategies to migrate data from SLC to MLC [24, 27, 35, 38, 43, 45, 47,
48], SLC to TLC [28], MLC to TLC [24, 40] or PCM to Flash [15, 41, 42] to utilize the space
efficiently and improve performance.

3. Performing data-migration [15, 27, 28, 36, 45] or GC [9] at idle time helps in mitigating its
latency. In case of bursty traffic or low free space, data migration [35] or GC [9, 44, 48] may
have to be performed on-demand.

4. The data-item not accessed for a period is a candidate for migration [35, 36, 40, 43].

5. Based on the number of valid pages in a block, the migration candidates may be selected [38]
or the decision about performing migration within MLC or from MLC to TLC [24] may be
made.
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Prepared using cpeauth.cls DOI: 10.1002/cpe



8 A. ALSALIBI ET AL.

6. To improve lifetime, some techniques seek to regulate amount of migrated data from SLC to
MLC [43, 45] or postpone flushing of data by giving extra chances to cold data to stay in SLC
[18, 35, 38].

7. The techniques using SCMs or DRAM as a buffer may flush the data from the buffer to SLC
or MLC based on the number of pages to be flushed [42, 51].

8. Some works discuss strategies to deal with block merge operations [8, 34, 38], whereas other
works avoid merge operations by using intelligent mapping techniques [35]. Also, some works
merge the data in DRAM buffer before flushing it to Flash memory [41, 42].

9. Some works use different mapping schemes in SLC and MLC [8, 18] or for hot and cold data
[10].

10. Some techniques schedule different operations on different channels [32, 34, 51] to boost
performance.

11. Some works leverage partial programmability of SLC to reduce write overhead [32, 50].

4. HYBRID SSD PARTITIONING TECHNIQUES

We now discuss the techniques in terms of their partitioning approach, viz. hard (Section 4.1) and
soft (Section 4.2) partitioning. Table VII classifies the works based on their partitioning techniques.

Table VII. Classification based on the partition strategy

Category References
Hard partitioning [8, 15, 18, 24, 32, 34, 36, 38, 40–43, 45–47, 49, 51]
Soft partitioning [7, 9, 10, 25, 33, 35, 39, 44, 48, 50]

4.1. Use of hard partitioning

Nam et al. [8] propose a technique which uses SLC as the log buffer to serve the frequently updated
data (refer Figure 4). The sequential and random write operations are served by MLC and SLC,
respectively. Also, if the sequential write count is more than a quarter of an MLC block, the data
in old data blocks and incoming data is merged into a new data block. Also, during block merge
operation, valid pages in victim log block are merged with the associated data blocks and the up-to-
date data pages are written to new data blocks. To perform overwrite operation in log area, old data
is marked as invalid and new data is written in subsequent free pages of log block. This improves
performance by virtue of avoiding ‘erase-before-write’ requirement. When SLC has no free pages,
victim block for erase is selected in round-robin manner to achieve wear-leveling. Their technique
is suitable for enterprise database applications and can efficiently support random write operations.

Sung et al. [45] propose a technique which seeks to improve performance and lifetime of hybrid
SSD. They divide the logical volume into fixed size portions and record the size of write requests
in each portion for a fixed time period. Based on this distribution and latency of each request on
SLC/MLC, data migration decision is periodically taken to boost read/write throughput in the next
period. Frequent small writes are mapped to SLC portion and less-frequent large writes are mapped
to MLC portion. Data migration is performed during idle time, e.g., when battery is being charged,
which reduces the impact on performance. Also, the amount of migrated data is controlled to reduce
degradation in Flash lifetime. Their technique is implemented in the device driver layer of OS and
not in FTL, which is closely bound to the Flash organization. Thus, their technique can work with
different file-systems and Flash chips from different vendors.

Oh et al. [36] note that due to poor write performance and small write endurance, TLC-only SSD
is ineffective as a general storage device. They propose integrating SLC (or MLC) with TLC. Their
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Figure 4. Working of the technique of Nam et al. [8]

technique identifies hot and cold data. Then, based on analytical modeling, they find the fraction
of hot data that should be mapped to SLC to boost performance and also balance wear between
SLC and TLC. Also, to ensure efficient utilization of SLC, a data-item not accessed for a given time
period is migrated to TLC in background. Their technique allows optimizing for performance or
lifetime or balancing the two metrics. A limitation of their technique is that the analytical model
cannot exactly account for time-varying application characteristics and needs to make unrealistic
assumptions such as perfect wear-leveling.

4.2. Use of soft partitioning

Im et al. [35] present a technique which works by detecting the data hotness based on the size
of the write. Small writes are mapped to SLC and sequential large writes are mapped to MLC
(refer Figure 5). In case SLC runs out of free pages, invalid pages are reclaimed or cold data is
moved to MLC. They note that block-level and hybrid mapping involve costly copy operations for
merging and hence, these mapping approaches are not suitable for MLC. Further, due to large MLC
capacity, page-level mapping necessitates large mapping tables. Hence, they use unit-based page-
level mapping [52] which does not require merge operations. In this mapping, each unit has multiple
sequential logical blocks and multiple physical blocks can be allocated to every unit. A page can
be written at any physical page inside the physical blocks assigned to this unit. This reduces the
mapping table size since the page-level mapping record is required only within the unit boundary.
The unit size is chosen at design time based on the SLC size.
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Hot data migration
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Figure 5. Working of the technique of Im et al. [35]

They divide the SLC into a hot and a warm partition. A write request first arrives in the hot
partition and after GC in this partition, moves to the warm partition. If warm data sees another write
request, the data in warm partition is invalidated and new data is stored in the hot partition. When
the warm partition runs out of space, it gives each partition N -chances before it is evicted to MLC.
By suitably choosing the size of hot and warm lists, the residency of data in SLC can be controlled.
The value of N is adjusted based on the update ratio in the warm partition. Their technique provides
significant improvement in lifetime and write performance.
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Jimenez et al. [25] note that in hard partitioning, the SLC-based buffer can fail much sooner than
the MLC. They propose selectively writing MLC Flash as an SLC Flash which keeps performance
close to that SLC. Their technique chooses between writing in SLC or MLC mode based on the
total wear. When a block assigned to the buffer sees more writes than a data block, the blocks are
swapped. Thus, the physical location of buffer can be migrated across the device which balances the
global wear. Their technique can work with different FTLs and mapping schemes. Their technique
provides flexibility to balance wear across the device, provides near-SLC performance and better-
than-MLC lifetime with no additional cost and only small reduction in density.

Yang et al. [39] note that TLC blocks can be programmed as SLC blocks which allows exercising
tradeoff between capacity and performance based on the access pattern and instantaneous utilization.
Since SSD performance is determined by the latency of hot data, by transforming maximum-
possible free blocks into SLC, hot data can be served from SLC to boost performance (refer Figure
Figure 6(b)) compared to the fixed-size SLC buffer approach (refer Figure 6(a)). In their design,
logical address range of a logical block equals the size of TLC block and that of a logical page
equals the size of SLC/TLC page. Data of a logical block can be stored as either one TLC block or
three SLC blocks. For each logical block, the mapping from logical to physical pages is stored in a
page-level mapping table.

Incoming writes
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SLC buffer

Used TLC Free TLC

(a) Fixed-sized SLC buffer techniques
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Free 

SLC/TLC

SLC expanded
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SLC buffer
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Incoming writes

Slow TLC writes Fast SLC writes

Capacity Capacity

Figure 6. Fixed-sized SLC buffer versus variable-sized SLC buffer approach ([39])

Since TLC write and read latency values are 8× and 3× (respectively) that of SLC values, they
propose giving higher priority to write-intensive blocks than to read-intensive blocks (refer Figure
7(b)). On a write, a block’s priority is changed to ‘high’. On a read to a ‘low’ priority block, its
priority is changed to ‘medium’. When a logical block is scanned by GC and no more block can be
reclaimed from this logical block, the priority is reduced from high to medium or medium to low.
Thus, in due time, cold blocks get low priority. This allows migrating cold data to TLC and freeing
up the space to store higher priority blocks as SLC. Data with higher and lower priorities are stored
in SLC and TLC, respectively (refer Figure 7(a)).

On a write request to a logical block, if the number of free SLC pages in this block is sufficient,
the write is performed in this block. Otherwise, GC is performed based on the level of storage
utilization. In case of low storage utilization, GC is performed within SLC to boost performance at
the cost of storage capacity. However, in case of high storage utilization, SLC data are packed
and migrated to TLC to increase the overall capacity. TLC is written only through this ‘TLC-
pack’ GC operation which avoids any non-sequential writes violating TLC write constraints. These
GC operations are illustrated in Figure 7(c). Overall, their technique improves write performance
significantly.

Chang et al. [9] present a technique which selectively performs SLC writes in MLC blocks to
meet workload SLOs without requiring over-provisioning and also reducing SLC write counts. It
is noteworthy that meeting SLO is different from simply boosting performance and requires more
careful management. Also, SLC/MLC mode selection for a request impacts both its own latency
and the latency of upcoming requests. Their scheduling algorithm works on the observation that if
a schedule is viable with k SLC writes for some write accesses, it remains viable on serving exactly
first k requests in the SLC mode. Incoming reads/writes are inserted in respective queues in order of
their deadlines, which is its arrival time plus the target latency. By default, writes are performed in
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Figure 7. Illustration of (a) block-mapping, (b) priority transition and (c) GC operations in the technique of
Yang et al. [39]

MLC mode, but if any queued request will fail to meet its deadline, an incoming write is performed
in the SLC mode. Further, if actual latencies fail to meet the SLO requirements, their technique
decreases the target latency and/or increases SLC-mode writes for meeting SLO requirements. In
their technique, read requests are prioritized unless write queue saturates since reads have higher
impact on user-experience and they are served by the “earliest-deadline first” scheme.

To avoid the need of on-demand GC, their technique performs GC when the storage is idle and
remaining free block count falls below a threshold. This threshold is updated based on SLC and
MLC write counts to balance capacity and performance. In case of bursty writes or low remaining
space due to aggressive use of SLC-mode writes, GC is performed in on-demand manner. GC scans
both SLC and MLC blocks and chooses those with the lowest amount of live data as victims. Their
technique can achieve or approach the SLO target without requiring over-provisioning, whereas
MLC-only device is unable to meet this target. Also, the increase in erase operations due to their
technique is small.

Lee et al. [48] propose a soft-partitioning technique which seeks to provide performance of
SLC with capacity of MLC. When a write arrives, their technique chooses SLC/MLC mode for
programming with a view to balance the performance and lifetime. To boost performance, their
technique writes maximum possible data in SLC-mode, however, excessive use of SLC can degrade
capacity and lifetime. To address this, their technique moves valid pages in SLC blocks to MLC
blocks to create free space and allows controlling the fraction of writes performed in SLC-mode.
For a write request, first the SLC/MLC mode is chosen and data is temporarily buffered in SLC or
MLC write buffer. Then, the write is performed similar to that in log-structured file systems [53].
On eviction from write buffer, a data-item is written to log block of SLC or MLC region in that
mode. As shown in Figure 8, if there are two SLC blocks and one free block, then the valid pages
of both SLC blocks can be copied to the free block with MLC-mode programming. Then, both SLC
blocks can be erased, which provides two free blocks. Free space reclamation is invoked only when
the available free space falls below a threshold. This approach reduces data migration compared
to early reclamation during idle time and reduces performance penalty compared to on-demand
reclamation. A limitation of their technique is that it uses SLC for storing both hot and cold data.
Also, it assumes the wear of SLC-mode to be equal to that of MLC-mode which prevents fully
leveraging Flash memory endurance.

Zhang et al. [50] exploit PPP feature of SLC to reduce write overhead by implementing in-place
delta compression. They note that since a given location is frequently written in a short interval (e.g.,
metadata updates, revision of file content etc.), writes to the buffer have high temporal redundancy.
This allows using delta compression to reduce the write overhead to the buffer. Previous techniques
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Figure 8. Free-space reclamation in the technique of Lee et al. [48]

store the base (original data) and subsequent deltas in different physical pages, which requires
maintaining a large amount of mapping information. Also, a read access needs to now fetch the base
and deltas from different pages which leads to read amplification and read latency penalty. Assuming
a 4KB sector and 16KB page, their technique writes a sector to an SLC page in compressed form.
Since per-sector compression leaves some cells in the page unutilized, they use PPP feature of SLC
to use these cells for later storing the deltas. Thus, the base and deltas are stored in the same SLC
page. If a page is filled after certain number of updates or the number of deltas reach a threshold, a
new physical page is allocated, the latest version data is written to a new page and delta compression
is reset for future udpates. This ensures that only one page needs to be accessed for reading a
data-item. They also propose a hybrid ECC for dealing with the different sizes of base and deltas.
They show that their technique reduces write traffic to SLC pages with negligible latency and area
overhead.

5. BUFFER DESIGN AND MANAGEMENT TECHNIQUES

The use of a particular memory technology or cell design as a buffer has a significant impact on the
overall performance, energy efficiency and cost of the hybrid SSD. For this reason, we now review
hybrid SSD management techniques in term of their buffer architecture and management policies
(refer Table VIII).

5.1. Using SLC as a buffer

Several techniques use SLC as a buffer to serve write operations which improves performance and
also provides higher device lifetime. However, since SLC has lower density, the MLC/TLC pool is
used for storing remaining (e.g., cold) working set size, which improves capacity and lowers the
cost.

Jung et al. [34] propose a technique in which many SLC chips are used as non-volatile write
buffer. Their technique designates one SLC chip to store data from the host till it gets full, which is
termed as “foreground operation”. The remaining SLC chips perform merge and garbage-collection
operation with MLC chips, termed as “background operation”. To improve the efficiency of
buffering, the blocks within SLC are divided into three partitions: sequential log blocks, random log
blocks, and data blocks. When the log block partition in foreground SLC is fully consumed, another
SLC chip is selected for foreground operation and this SLC is now used for background operation.
Background and foreground operations happen on different channels which avoids conflicts. Their
mapping technique is built-on the FAST (fully associative sector translation) technique [54] and
seeks to allow SLC to handle both random and sequential write access operations.

Im et al. [38] propose a technique which uses SLC as log buffer with page-mapping scheme
and MLC as data block with block-mapping scheme. Use of block-level mapping in MLC helps in
reducing the size of mapping table since the MLC partition has larger number of pages than the
SLC partition. When SLC has no empty space, GC migrates cold data to MLC or reclaims the space
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Table VIII. Classification based on the buffer architecture

Category References
SLC Flash [7, 8, 18, 25, 32–35, 38, 39, 50]
MLC Flash [40]

DRAM [41, 49]
SCM [15, 24, 42, 47]
Both DRAM and
SCM

[46]

from invalid pages. Hot pages are kept in SLC area. To minimize migration cost, the pages selected
for migration are chosen based on the number of valid pages in corresponding MLC data block with
which the migrated pages are merged.

Based on the number of updates to a page after last GC operation, each page is classified into
hot, warm and cold. Then, based on the number of pages in a data block whose corresponding
page in log buffer is hot/cold/warm, each data block is also classified as hot/warm/cold. Based on
this, page-level merge is performed only with cold and warm blocks. Then, log pages whose linked
data blocks are cold, are moved to data blocks. For pages in log buffer whose connected warm
data blocks have more than a threshold valid pages, log blocks are not merged with data blocks to
postpone MLC page copy operations. Further, if a log block has less than a threshold number of
valid pages, then, its valid pages are moved to another log block. Finally, blocks with no valid pages
are erased. Sequential large chunks of data are bypassed from SLC since they are usually written
only once. They show that their technique manages SLC area efficiently and improves performance
significantly. The limitation of their technique is the use of a special ‘fusion Flash memory’ which
has lower performance than general SLC and MLC chips [8].

5.2. Using MLC as a buffer

Hachiya et al. [40] design MLC/TLC Flash based hybrid SSD and use MLC Flash as a buffer
[40]. Their technique stores hot data in MLC pool to achieve high performance. To ensure efficient
utilization of MLC pool, their technique selects extremely cold data and migrates it to TLC pool.
Since TLC has limited write endurance and high write latency, storing rarely accessed data in TLC
leads to significant reduction in accesses to TLC which improves its lifetime. Compared to MLC-
only SSD, their technique provides improvement in performance, energy and cost efficiency.

5.3. Using SCMs or DRAM as a buffer

Given the low capacity of SLC Flash and low endurance and high latency of MLC Flash, use of them
as a buffer presents challenges. To address these limitations, some works propose using non-volatile
SCMs (e.g., PCM, ReRAM) or volatile memories (e.g., DRAM) as a buffer. We now discuss several
such works.

Yim et al. [15] propose using NVRAM (e.g., PCM) as a write buffer in an SLC/MLC hybrid SSD.
Their technique demarcates write buffer into three portions. The first portion is used for serving
small writes (e.g., 4KB writes for file system metadata) which reduces the host delay. These data-
items are copied to Flash memory when it is lying idle. The second portion is used for reducing the
number of writes performed by Flash (refer Figure 9).

Their technique uses hash tables stored in volatile buffer to test whether the requested page is
present in the buffer. If so, the page is directly updated in the buffer. Otherwise, if the page had a
write in the near past (e.g., last K writes), the page is considered to be hot, otherwise, it is marked
as cold. Also, based on the type of file system (e.g., FFS (fast file system) or FAT (file allocation
table)), pages belonging to metadata can be explicitly marked as hot. Then, only hot pages are stored
in the write buffer. For a write directed to a page stored in buffer, the page is directly updated which
reduces the number of writes to Flash. A page evicted from buffer is stored in SLC, whereas all
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cold pages are stored in MLC. The third portion of buffer facilitates byte-granularity reads to enable
‘execute-in-place’ capability. On a read access, if the page is found in the buffer, the data is provided
to host with low latency, otherwise, the page is loaded from Flash to the buffer and also delivered to
the host. Overall, their technique achieves write performance of SLC with density and cost of MLC
memory.

Park et al. [41] present a technique which uses chained-block (CB) to design hybrid SLC-MLC
SSD. Their technique stores the chained-block mapping table, page mapping table, file system meta-
data, and user data with frequent short writes in SLC. Long writes are stored in MLC. Both SLC
and MLC store data as separate chained-blocks but have similar organization (refer Figure 10).
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Figure 10. Working of the technique of Park et al. [41] (Z is a threshold)

Number of physical blocks in SLC chained-block is same as the number of SLC chips and each of
them resides in a different SLC chip. MLC chained-block length is higher than that of SLC chained-
block, which compensates for its higher latency. After one write, if an associated write comes within
a fixed time window, these writes are bundled into one bulk-write in the write buffer (which is stored
in a RAM, e.g., DRAM). When the time window is over, or a read comes or the buffer saturates,
data in the buffer is stored in either an SLC or an MLC chained-block depending on length of the
bundled write.

They use two kinds of mapping tables: (1) a CB mapping table which provides physical block
address inside a logical CB and (2) a page mapping table which provides address of the requested
page inside the logical CB. Finally, Flash is accessed using chip-ID, physical block address and
physical page address. When a logical CB is updated, an SLC or MLC CB is allocated to the logical
CB, depending on whether the write request is smaller or larger than a threshold. SLC CB waits for
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more writes for a certain time, after which the data is moved to MLC CB. Figure 11 summarizes their
address translation approach. While using 80% MLC chips, they achieve write performance close to
that of the SLC chips. The limitation of their technique is the use of complex mapping scheme and
use of two types of Flash memory as the update area which degrades performance. Also, since the
lifetime is limited by the portion with smallest lifetime, they use 10-30% SLC portion to increase
its lifetime above MLC portion which increases SSD cost and the size of address translation table.

Logical sector address

Logical chained 

block address

Logical page 

address

Physical block addressVirtual page address

Bank number Physical page address

Virtual page address

mapping table

Chained block

address mapping table

Access Flash memory

Write

Figure 11. Address translation process of Park et al. [41] technique

Lu et al. [42] propose a hybrid SSD design which uses PCM and SLC as primary and secondary
update areas, respectively and MLC as the main data storage (refer Figure 12). They use PCM for
buffering and updating the write data. SLC and MLC are organized as superblock designs [41]
and their page size needs to be equal. The technique of Park et al. [41] uses one MLC superblock
for data, one MLC superblock for sequential updating and multiple SLC superblocks for random
updating. In the technique of Lu et al. [42], an LSBA can have only one MLC superblock as data
area and any number of SLC superblocks for random updating and thus, their technique does not
use MLC superblock(s) as the update area.
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Figure 12. Working of the technique of Lu et al. [42]

If PCM has free space to store incoming write data, the requests are packed with the existing
buffered data into multiple page-clusters. Otherwise, single or multiple page-cluster(s) are flushed
to hybrid Flash to create space in PCM. Depending on whether the number of pages to flush is
more or less than the threshold, the data is flushed to MLC or SLC, respectively. For flushing to
MLC, a DRAM buffer of the size of one MLC superblock size is used. The flushed data and valid
pages from corresponding LSBA of Flash are all stored in the DRAM buffer (refer Figure 13(a)).
In DRAM buffer, the pages are sorted based on LPN and written to a free MLC superblock (refer
Figure 13(b)). Now, this becomes LSBA’s data area and the old superblock is erased. Thus, MLC
superblock is not used as the update area which reduces the amount of mapping information. The
DRAM buffer is turned-off when idle.

In case no SLC superblock is free, GC is performed and a victim is selected in the following order.
(1) If an LSBA is found such that the number of used pages in all SLC superblocks in the LSBA
update area exceeds the pages of single MLC superblock in LSBA data area, then at least one SLC
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superblock can be reclaimed after merging SLC superblocks. (2) Otherwise, an LSBA is searched
which has SLC superblocks with more invalid pages than the total pages in one SLC superblock.
(3) If no such LSBA is found, it implies that SLC superblocks are uniformly allocated in LSBAs.
Hence, an SLC superblock (update area) is selected and merged with an MLC superblock (data
area). Then, valid pages are written to the newly allocated empty MLC superblock and reclaimed
SLC superblock(s) are erased. Overall, their hierarchical update approach improves lifetime and
write performance of SSD significantly.

Park et al. [46] note that since the data stored in volatile-RAM (VRAM) buffer may be lost on
a power failure or system crash, most systems use pdflush mechanism to periodically (e.g., 30
seconds in Linux) write updated data to storage, even when the buffer has free space. This, however,
contributes ∼80% of the writes to Flash memory and thus, increases the Flash writes significantly.
They propose designing the buffer cache with both VRAM (e.g., DRAM) and NVRAM (PCM or
STT-RAM), as shown in Figure 14. On a read to a block, the data is cached in the VRAM buffer
which provides low-latency for read-intensive data. On a write due to I/O or pdflush operation,
the block is moved to the NVRAM buffer. This ensures data consistency without requiring writes to
the Flash memory. Writes to Flash happen only when a victim is evicted from the NVRAM buffer.
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Read/write

SLC

SLC

MLC MLC

MLCMLC
NVRAMSLC            NVRAMMLC

Read/

write

Buffer Hybrid SSD

Figure 14. Working of the technique of Park et al. [46]

Their technique divides both VRAM and NVRAM buffers into SLC and MLC portions. For each
of the four portions (V RAMSLC , V RAMMLC , NV RAMSLC and NV RAMMLC), the metadata
of recently evicted blocks are tracked. By seeing hits to them and based on the read/write latency
to SLC and MLC, the size of four portions is adjusted. The sizes are enforced at the time of
buffer replacement. On a miss in the buffer, their technique checks if a free block is present in
the VRAM (or NVRAM) on a read (or write) reference. If no, a block is evicted from VRAM (or
NVRAM) and the requested block is stored in place of free block. Within VRAM, the victim is
chosen from V RAMSLC or V RAMMLC depending on which portion currently exceeds its quota.
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Similar procedure is applicable to NVRAM. Blocks evicted from NVRAM are flushed to Flash. By
assigning the cache space based on the I/O behavior, access pattern of buffered blocks and memory
characteristics, their technique provides large improvement in I/O performance. Also, by virtue of
using NVRAM in the buffer cache, it promises high reliability of file data.

Cho et al. [51] propose a technique which seeks to maximize parallel execution of sequential
write requests since random request do not benefit from parallelism. Their technique uses an adapted
version of hybrid super-block mapping where a hybrid mapping approach is used along with super-
block design. In this approach, mapping of logical to physical address is done using super-blocks.
Then, the VPN table for each physical super-block address is accessed for tagging the logical page
number. Thus, there is mapping between LSBAs to PSBAs. VPN maps LPN in PSBA and provides
the channel and bank IDs. This allows parallel writing of pages in an LSBA. Their technique buffers
the data in LSBA and flushes them to Flash chips for maximizing interleaving.

As shown in Figure 15, if the requested data is already present in the buffer, the requested data
is updated. Otherwise, if the buffer has sufficient free space, the incoming data is pushed to the top
slot. However, if the buffer does not have sufficient space, a victim block is found. Victim entry
is selected using LRU policy and to account for the spatial locality, number of update pages in a
superblock are also considered. If MLC channel is busy due to merge operations, a random entry
is selected as a victim, otherwise, a sequential entry is selected. Random and sequential data are
flushed to SLC and MLC, respectively and the threshold for determining the random or sequential
write is selected based on the number of MLC and SLC banks. Their technique reduces the number
of erase operations and also improves write performance.
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Figure 15. Working of the technique of Cho et al. [51]

Sun et al. [47] note that although NVRAMs provide higher performance and endurance than
Flash, they also have higher cost and hence, the amount of NVRAM used in a hybrid SSD needs to
be carefully chosen based on several factors, e.g., area, cost, latency and application behavior. By
analyzing these parameters, they observe that to achieve high SSD performance, read/write latencies
of NVRAMs need to be below 1µs. Also, write latency has higher impact on SSD energy than
read latency. They study the impact of different NVRAM area cost models (viz., optimistic and
pessimistic), NVRAM:Flash capacity ratio, NVRAM read:write latency ratio, etc. and also study
strategies for mapping hot/cold and sequential/random data to NVRAM or Flash.

Kwon et al. [49] propose a scheme which seeks to improve SSD performance and balance the
wear of SLC and MLC Flash. Their scheme identifies hot data based on two factors: frequent
updates to a data-item and irregular allocation. Irregular allocation refers to the fact that the LPA of
the small hot data is not sequential to the previous LPA. Hot and cold data are stored in SLC and
MLC registers, respectively from where they are transferred to SLC and MLC chips, respectively.
Writing and updating of data in the registers is performed similar to previous techniques [55, 56].
DRAM is used for data that cannot be identified as cold or hot. If the write request does not update
existing data and is not sequential, LSN of write request is stored in DRAM buffer if DRAM buffer
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contains less than a threshold number of LSNs. However, when DRAM buffer contains more than
a threshold number of LSNs, their scheme checks if the LSN of the write request is in sequence
with the LSNs stored in the DRAM buffer. If so, they are transferred to the MLC registers to be
written to MLC chips. Otherwise, the data is stored in DRAM since its sequential/random nature is
still not known. Overall, their technique reduces total write and erase operations and also achieves
wear-leveling.

Matsui et al. [24] propose a technique which uses SCM-based buffer for a MLC/TLC-based
hybrid SSD (refer Figure 16). They classify the data as hot, cold and frozen, which refers to
frequently, infrequently and rarely accessed (respectively) data. Then, hot, cold and frozen data
are stored in SCM, MLC and TLC, respectively. Further, based on whether the length of a write
request is greater than or lower than a threshold (8KB), the data are classified as random or
sequential, respectively. Then, random data is stored in SCM whereas sequential data is stored in
MLC. Furthermore, during GC in MLC, the oldest block is selected for reclamation. If the block has
many valid pages, these data are considered frozen and they are migrated to TLC. However, if the
block does not have many valid pages, its valid pages are moved to other blocks in MLC itself and
the block is erased. Thus, data are not directly written to TLC. Their design improves performance
for wide variety of applications with minimal increase in SSD cost.
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Figure 16. Working of the technique of Matsui et al. [24] (RAM refers to an SCM, e.g., ReRAM)

6. OPTIMIZATION OBJECTIVES AND ALGORITHMS

In this section, we discuss SSD management techniques in terms of their optimization metric
and solution algorithms. Several hybrid SSD management techniques use optimization/solution
heuristics such as k-means clustering [18], genetic algorithm [10], integral controller [43] and
analytical models [10, 36, 44].

6.1. Techniques for managing failed blocks

Jimenez et al. [33] note that in traditional MLC Flash, a block is discarded as soon as its error rate
exceeds the correction capability of ECC. They propose ‘revitalizing’ this block by using it as an
SLC block which boosts lifetime at the cost of capacity. Figure 17 shows the working of the baseline
and the technique proposed by Jimenez et al. [33] over their lifetime. In both cases, initially four
portions are allocated: data portion, buffer portion (organized as SLC-mode), free blocks and bad
blocks. Initially, bad block portion is empty. In the baseline design, over the lifetime, the blocks
which become faulty are moved to the bad block portion and the free block portion gradually
becomes empty. This is shown by the ‘intermediate state’ on the left side in Figure 17. When the
SSD has no free blocks, it is assumed to reach its end, as shown by the ‘final state’ on the left side
in Figure 17.
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Figure 17. Jimenez et al. [33] technique versus the baseline architecture

In their proposed technique shown on the right side of Figure 17, the buffer and the free block
portions can have both revitalized and robust blocks, however, the data portion can have only robust
blocks. Revitalized blocks are kept in free block portion and completely failed blocks are directly
migrated to the bad block portion. As shown in the right side of Figure 17, over time, robust blocks
get replaced by revitalized blocks in the buffer. While allocating a block from free set, the buffer
preferentially allocates revitalized blocks, which reduces the pressure on robust blocks. Thus, as
long as enough robust blocks are available for the data portion, the SSD stays alive which increases
the overall lifetime, as shown in bottom right side of Figure 17.

Since buffer partition sees higher write intensity than data partition, revitalized blocks help in
reducing write pressure on free blocks and the remaining robust blocks. Management of revitalized
blocks is performed similar to those of bad blocks and they are distinguished from robust blocks by
use of a flag. Buffer portion preferentially allocates revitalized blocks instead of robust blocks to
reduce pressure on them. Their technique increases device lifetime without harming performance or
requiring additional storage.

It is noteworthy that the technique of Jimenez et al. [33] converts MLC blocks into SLC when
they exhaust their lifetime to benefit from the high endurance of SLC blocks. By comparison, other
soft partitioning techniques perform mode-transition even when MLC blocks are healthy to benefit
from the low latency/energy of SLC blocks.

6.2. Techniques for managing ECC

Hsiehv et al. [32] propose storing ECC in data area of SLC (2KB) instead of spare area of MLC
(128B), which allows using stronger ECC, unconstrained by spare area size limitations. Since MLC
does not allow partial-page programming (PPP), storing ECC in MLC data area is not effective,
since ECC size is much lower than that of a page. With PPP, every SLC page can be written four
times as 1/4 page size chunks each time, and thus, ECC can be stored in SLC without requiring erase
operations. Also, higher write endurance and lower error rate of SLC ensures higher reliability of
ECC.

Multiple contiguous SLC pages make an ECC area (refer Figure 18). Also, multiple MLC pages
(e.g., one MLC block) form one mapping unit and the ECCs for all pages in a unit are stored in
corresponding ECC area for saving space since the ECC size is much lower than the data area size.
Since multiple writes are required for filling an MLC block and completing the ECC area, they use
SLC itself as a buffer area for temporarily storing ECCs of previously written MLC pages before
committing entire ECC area to SLC. As MLC blocks only support sequential programming, when
the last page of an MLC block is programmed, all ECCs in buffer area can be committed to an ECC
area. After updating ECC mapping table, buffer area is reclaimed.

They use adaptive ECC scheme which provides BCH (Bose-Chaudhuri-Hocquenghem) codes
with 9, 14, 19 and 24 bits correction capability for every 512 bytes. Initially, 9-bit ECC is allocated
to each page in an MLC block. Since different cells in a page see different write patterns, they show
different error rates. Thus, depending on error rate or amount of wear of an MLC page, stronger ECC
is allocated to it. They assume a multi-channel design where ECC and user data are simultaneously
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written to SLC and MLC through different channels. They show that with a 32GB MLC-based
SSD and 1GB SLC, their technique improves SSD lifetime significantly. It is noteworthy that “low-
density parity-check” (LDPC) codes are used much more widely in state-of-the-art SSD controllers
than the BCH codes.

6.3. Use of k-means clustering

Chang et al. [18] note that small writes occur frequently and are directed to a small amount of data.
Non-hot data are referenced infrequently by large writes. Further, data are either very small or very
large and not medium-sized. Based on this, they use k-means (k = 2) clustering to find two peak
frequencies in request size distribution. This provides the threshold of small writes and all such
small and hot writes are directed to SLC. They manage SLC as a circular list where new data arrives
at the head pointer location and free space is reclaimed from the tail pointer location since its update
frequency is lower (refer Figure 19). In case of no space, head pointer moves to the next block. Due
to the out-of-place writes, recent data appears close to the head pointer. When the head pointer
moves ahead of the tail pointer by more than certain blocks, the tail block is reclaimed and the tail
pointer advances. This organization reduces copy operations during GC and also ensures uniform
wear across SLC blocks.

Invalid data Valid data

Q blocks (fixed)

Growing direction of the head pointer 

and the tail pointer

Head blockTail block

Newly arriving data

Data not updated for 

writes to Q blocks are 

moved to MLC flash.MLC MLC

MLCMLC

Figure 19. Use of SLC flash as a circular log space in the technique of Chang et al. [18]

SLC is managed using page-level mapping and the mapping information is stored in a hashed
table. MLC is managed with a two-level mapping scheme. In level-1 mapping, logical blocks are
mapped one-to-one to physical blocks. Such physical blocks are termed ‘data block’. Since in-place
writes are forbidden, a spare physical block with all free space is allocated on first sector write to
a logical block. New data are written to the first page of the spare block and the next sector write
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data are appended to its free space. This block is termed a log block and in case of no remaining
free space, another log block is allocated. The ordered list of one data block and multiple log blocks
make a block chain. In level-2 mapping, disk sectors of a logical block are mapped to MLC pages
in associated block chain.

When SLC wear exceeds MLC wear, SLC accepts only very hot data or updates to existing data;
remaining data are directed to MLC (refer Figure 20). To account for the changing working set,
only the metadata of non-update write request is recorded in SLC. If the write-request appears
again, then the data is stored in SLC, otherwise, the metadata is removed when the corresponding
block is erased.

SLC

Write

SLC

MLC MLC

MLCMLC

Page-level 

mapping
Two-level mapping

SLC wear 

> MLC wear

Hot 

data 

?

Y N

Y

N

Cold data

N Y Very hot data 

or update to 

existing data?

Figure 20. Working of the technique of Chang et al. [18]

During GC, before moving a valid sector from SLC to MLC, the MLC checks if its corresponding
logical block has been allocated to any of the log blocks. If yes, the sector is written to the MLC
flash, otherwise, the sector is copied to the head block of SLC. By virtue of postponing writing of
random data to MLC, this approach reduces GC overhead in MLC, although it also reduces SLC
capacity available for storing the hot data. To compensate this, during GC in MLC, valid data are
collected from both log blocks and SLC. They show that using 256MB SLC with 20GB MLC
provides nearly double the performance compared to an MLC-only SSD while also saving energy.

6.4. Use of genetic algorithm

Liu et al. [10] propose a technique for improving lifetime and performance of SLC/TLC based SSD.
In their technique, TLC stores user data whereas mapping tables are stored in SLC since they have
high access frequency (refer Figure 21). A write request with lower or higher than a threshold size
is considered random or sequential, respectively. Sequential writes are further divided into hot and
cold depending on the access frequency. Random and hot sequential writes are stored with page-
level mapping and the cold sequential writes are stored with block-level mapping.

They allocate the number of SLC blocks based on the relative instantaneous erase counts of SLC
and TLC. Since this simple mathematical model may not accurately capture behavior of different
applications, they also use a genetic algorithm to obtain a heuristic solution. The population for the
algorithm is formed by choosing different combinations of three parameters, viz., hot data threshold,
random data threshold and SLC-mode block ratio. The fitness functions are (1) ratio of erase count
between SLC and TLC and (2) ratio of effective capacity of hybrid Flash to that of TLC-only Flash.
Multiple generations are simulated until the best-fit solution is found. Their technique brings large
improvement in lifetime and performance. Also, the genetic algorithm provides higher lifetime than
the mathematical-formula based approach although the genetic algorithm also incurs higher storage
and latency overhead due to simulating multiple generations.
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6.5. Use of integral controller

Murugan et al. [43] propose a hybrid SSD management technique which works by identifying hot
data. Pages with write-count higher than a threshold are termed as hot and remaining pages with non-
zero writes as termed as warm since they have potential to become hot. The threshold is periodically
updated to include pages responsible for top K% (e.g., 10%) of writes in the list of hot pages. Then,
based on latency and write endurance of SLC and MLC, an integral controller decides the fraction
of hot writes that are directed to MLC and the remaining hot writes go to SLC. All cold writes go
to MLC. They use wear-leveling techniques within SLC and MLC. Due to the change in working
set, a previous hot data-item may become cold and hence, it is migrated from SLC to MLC. As time
passes, the amount of data migrated from SLC to MLC is gradually reduced to lower the lifetime
degradation. Their technique improves both write performance and SSD lifetime.

6.6. Use of analytical models

Wang et al. [44] note that use of a fixed size SLC buffer can harm performance and naively
increasing the capacity of SLC buffer can increase GC overhead due to the requirement of
reclaiming/moving large number of blocks. Also, this fixed-size buffer approach fails to account
for the variation in application characteristics. They develop an analytical model of write costs in
hot and cold regions based on the application behavior, GC overhead and existing region utilizations.
GC cost increases with rising utilization since more valid pages need to be migrated from a victim
block. Based on these factors, the optimum capacities of two regions are decided.

Due to the change in working set or incorrect identification of hot/cold data, a data-item may be
placed in incorrect region. They note that when a hot data page is wrongly placed in cold region, a
future update to the page can be performed in hot region and the previous copy in cold region can
be invalidated, thus, no data migration is required to correct the placement. However, when a cold
data page is incorrectly placed in the hot region, it needs to be migrated to the cold region. They use
page-mapping scheme. A hot block uses only fast pages whereas all pages are used in a cold block.

When free blocks in a region fall below a threshold, GC is performed. There are three possible GC
operations: (1) taking an erased block from other partition which changes the capacity and utilization
of both partitions (2) moving valid data in victim blocks to other partition which changes utilization
but not capacity of each partition and (3) moving valid data within a partition which does not
change partition utilization. For selecting one of three GC operations, their after-GC performance is
evaluated and the one achieving the smallest write cost is selected and performed. Their technique
improves performance over a fixed-sized partitioning technique.
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7. CONCLUSION AND FUTURE OUTLOOK

The design and management of storage devices have a significant impact on the performance, energy
and cost efficiency of all computing systems ranging from embedded systems to data-centers and
supercomputers [57]. In this paper, we presented a survey of the management techniques for hybrid
SLC/MLC/TLC Flash-based SSD devices. We conclude this paper with a brief mention of future
research directions.

Flash memory suffers from read disturb issue whereby a read to one row of cells affects the
threshold voltages of unread cells in other rows of the same block. Addressing this will be highly
important especially as Flash scales to low feature-size. Further, in face of increasing memory
capacity demands, 3D Flash appears as a promising solution to continue to scale capacity within
area budgets. While 48-layer 3D Flash products are already in market, 256-layer Flash is expected to
become available in near future [6]. Compared to 2D Flash, 3D Flash memory provides higher data
write performance and reliability, and lower cost per byte. The challenges in using 3D Flash is that
it incurs higher initial investment and manufacturing cost and may provide lower yield compared to
2D Flash. Addressing these challenges will be vital for ensuring adoption of 3D Flash in commercial
SSDs.

File system maintains metadata for files which can provide valuable hints to SSD-management
techniques, however, most existing techniques fail to benefit from this information. For example,
file-system level information can be useful for selecting appropriate blocks for garbage collection,
or as hot/cold blocks for migration to suitable SSD partition. Clearly, a coordinated file-system and
SSD management approach can provide much higher rewards than isolated management techniques
for them.

Most proposed techniques use a fixed value of algorithm parameters such as threshold for finding
hotness of data. While this approach works well when the programmer/designer has insights into
nature of applications, for the general case of workloads with random combination of applications or
different ratio of read/write operations, use of fixed parameters may not work well. Clearly, runtime
adaptation of control parameters is vital for the proposed techniques to be effective for real-world
scenarios.

Most existing simulators have been developed for evaluating homogeneous (e.g., MLC-only)
SSD devices. Since each simulator mimics a particular device/machine configuration and makes
certain assumptions, using these simulators for evaluating hybrid SSD devices may not be fully
accurate. Creating hybrid SSD specific simulators and hardware prototypes will be significantly
boost research in this field and will provide even more meaningful insights.

Based on Moore’s law, the number of cores in a system are steadily increasing. Conventional
hybrid SSD management techniques focus only on improving overall throughput which was
sufficient for single-core systems. In multi-core systems, several other system-level objectives and
constraints become prominent, such as fairness, QoS (quality of service), implementing priorities
between applications running on different cores, non-uniform latencies due to data-migration
operations in hybrid SSDs, etc. However, current hybrid SSD management policies are oblivious
of these goals and constraints. Accounting for these metrics in the management policy of hybrid
SSDs is important for ensuring their adoption in future multi- and many-core systems.

Most existing SSD management techniques have been proposed and evaluated in context of
CPUs. In recent years, GPUs have been intensively used for a range of big-data analytics, database
and scientific applications [58]. Since GPUs are not standalone computing units that can directly
access the external storage, they need the help of host-side storage software stack for accessing
the data on SSDs [59]. This, however, exacerbates the overheads of file-resident data movement
and prevents fully exploiting the potential of both GPU and SSD [60]. As GPUs become primary
citizens of the computing world, novel strategies to directly connect GPUs to hybrid SSDs and
exploit specific features of SLC/MLC/TLC in boosting efficiency of GPU applications will be highly
rewarding.

Traditional error-intolerant computing approach necessitates precise computation and storage.
However, the intrinsic error-tolerance of applications and limitations in cognitive capabilities
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of users provides scope for approximate computing and storage [61], where accuracy can be
sacrificed to boost performance and energy efficiency. This approach can provide large benefits in
Flash memories, for example, permitting imprecise writes in MLC/TLC Flash allows significantly
reducing the number of program and verify cycles, which lowers write latency/energy and improves
write endurance. Going forward, an effective approach for imprecisely storing and processing data
from hybrid SSDs will be highly effective in meeting the challenges of ‘big data’.
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