I'M ECC
DRAM with integrated error correcting code

A Revolutionary Product Family
of Error-Correcting Memory for High
Availability Applications

With a need to deliver highest quality products operating in all
environments, cope with small and unique form-factors, all while
containing costs, manufacturers of high-availability applications
seek out solutions to accommodate this demand on their designs.

Complex systems always require a processor and memory. The
long-term stability of the application depends upon the correct
and consistent function of these key components at all times and
under all conditions. The memory solutions presently deployed are
typically one or multiple DRAM-ICs holding hundreds of millions,
or even billions of data-bits of program code and essential data. If
just one of these data-bits changes its value, it can cause incorrect
calculations of algorithms, functional errors of the software or
even system crashes.

Inside the DRAM, each data-bit is kept in very small capacitors charged
with electrons that decide if the stored data-bit value will be a 0 or a 1.
The structures of these capacitor-cells in the DRAM are extremely small
and it is impossible to guarantee the identical quality of each of these
cells. Throughout the 30 years history and continuous improvement of
the process-technologies used to manufacture DRAMs, the consistency of
the memory cell-quality has improved, but has yet to be perfected. There
is still no comprehensive assurance of uniformity regarding the stability
of each memory-cell within any given DRAM IC, not even on industrial or
automotive graded memory-product.

The reality of this is devastating. A number of surveys and field-studies
have been published on the likelihood and frequency of memory-errors.
The most representative analysis has been performed by the University Of
Toronto*, who examined the memory of the entire Google-Server-fleet
for a period of 2 1/2 years. Although servers run under well-controlled
environmental conditions, failure-rates counted in FIT (failure in time /
per billion devices hours) of 25000 to 70000 FIT per Megabit were
determined. Conversion into Gigabit and MTBF (mean time between
failure) results in only 14 to 40 hours until the first bit flips in a standard 1
Gigabit DRAM chip as an average value.

The vast majority of memory errors found by the field-study were
classified as single bit errors, or single-event-upsets (SEU), correctable by
the Error-Correction-Code (ECC) functionality built into the server-
processors. Such SEU’s are typically non-permanent errors. Overwriting
the incorrect memory-bit with correct data fixes the problem, but it can
re-appear at any time in the same or another memory-cell.

I'M ECC PROTECTED

- on-chip ECC logic protects
your data from single bit
errors
- available in DDR1, DDR2,
DDR3 & LPDDR1 technologies
- "plug-and-play" compatible
to conventional JEDEC
standard DRAM
- industrial temperature as a
standard, optional high
temperature products for
automotive and other
applications

Upgrade any application
to server-grade-
reliability
Small weaknesses of some memory cells or external disturbances like electromagnetic or particle radiation can cause unavoidable random bit-flips. The error-rate increase with the age and intense of use of the memory. In rare cases, a DRAM-cell can also get permanently damaged resulting in erratic data upon every access. While a system crash is undesirable in most applications, a bit-error that does not cause a crash may lend itself to even worse results. The error can linger in the system, cause incorrect calculations and multiply itself into further data. The corrupted data can then move to connected storage media and grow to an extent that may be difficult to recover. It is impossible for the customer or user to analyze the root-cause of such problems as they cannot be repeated. Most DRAM errors are transient and disappear after rebooting the system, while the caused damage stays. Manufacturers rarely see products returned from the field due to a presumed single-occasion memory-error.

In Servers and other high reliability environments, it has become common to protect the memory with an ECC algorithm adding a checksum stored with the data, allowing to correct single bit failures. This error-correction is implemented by widening the data-bus of the processor from 64 to 72 bits to accommodate an 8 Bit checksum with every 64 Bit word. Server processors are equipped with a logic to and from the extra-wide-memory. This logic generates ECC checksums and is able to verify and correct data read from the memory by these checksums.

Intelligent Memory (I'M) ECC DRAM components integrate error-correction logic with an internal spare memory-area for the checksums directly on the silicon of the DRAM IC itself. The memory performs the data-correction completely independent from the processor. When writing data to the ECC DRAM memory, the integrated logic automatically generates a checksum "on the fly" and stores it separately from the crucial data itself. Upon a Read from the DRAM, the checksum is used to verify the data and correct it when required. The complete process of error-correction runs without any noticeable delays or latencies and does not require any specific hardware or software changes. The processor does not need to have ECC capabilities. I'M ECC DRAMs are direct drop-in replacements for any conventional, unprotected JEDEC standard DRAM, making them the most simple and effective way to improve memory reliability and stability to server-grade level by adding error-correction.

Nearly all electronic products can benefit from I'M ECC memory. Any application requiring consistent system-availability and stability for days, months and years should consider to add ECC protection. But also for applications that require the highest quality, reliability and functional safety, or run in the harshest of environments, a memory error protection is mandatory. Networking devices like routers or access points are expected to be always on and ready to use. Control-systems, industrial computers, harddisk-drives, security systems, medical devices, automotive, avionic and space based electronics need to ensure system and operational stability as well as long term functionality.

I'M ECC DRAM products provide the ability to elevate thousands of applications to new levels of memory reliability.

Available in all common memory technologies

I'M ECC DRAMs will be available in the standard memory technologies DDR1, DDR2, DDR3 and also in LPDDR1. Capacities range from 512 Megabit devices up to 2 Gigabit and the parts are available in all common bit-widths like x4, x8, x16 or even x32.

Simply "plug-and-play" compatible

By replacing the normal memory-components with I'M ECC DRAMs, your application will immediately take benefit of a multiple million times higher reliability.

Stronger than standard error-correction

While on Servers, one bit out of each 72 Bit word can be corrected, the ECC DRAMs correct the data per chip. If 8 chips in a x8 organization are required to fit the 64 Bit processor-databus, each of these 8 Chips will detect and correct single bit errors. The more I'M ECC DRAMs are running in parallel on the processors databus, the stronger is the grade of the ECC protection.

Optional eXtra robustness

For all those who cannot get enough of the term quality, we have implemented a cell-twinning-option into our products. In the manufacturing process of the I'M ECC DRAMs, we can activate the twinning which on the one hand reduces the total memory capacity to the half, but on the other hand doubles the charge that each cell can take. This makes the DRAM cells failure-hard as a rock. And if a bit should still be flipping, you still have your ECC protection on top.
Increase your sales by showing the reliability of your application

Customers using the Intelligent Memory ECC DRAMs may use the "I'M ECC protected" seal to promote their products. Put this seal on your website, attach it as a sticker right onto your product, use the logo for your product presentations and show your customers how your applications distinguish themselves from the competition in terms of quality, reliability and robustness.

References
* Schroeder, Bianca - Dept. of Computer Science, University of Toronto, Toronto, CA
Pinheiro, Eduardo - Google Inc., Mountain View, CA
‘DRAM Errors in the Wild: A Large Scale Field Study’ - 2009
Product Family Overview

I'M ECC DRAM with integrated error correction

<table>
<thead>
<tr>
<th>Technology</th>
<th>Capacities</th>
<th>Organizations</th>
<th>Voltage options</th>
<th>Package</th>
<th>Speed Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR3/DDR3L</td>
<td>512Mbit, 1Gbit, 2Gbit</td>
<td>x4, x8, x16</td>
<td>1.5V, 1.35V</td>
<td>FBGA78 (x4, x8), FBGA96 (x16)</td>
<td>DDR3-1333/1600/1866</td>
</tr>
<tr>
<td>DDR2</td>
<td>512Mbit, 1Gbit, 2Gbit</td>
<td>x4, x8, x16</td>
<td>1.8V</td>
<td>BGA60 (x4, x8), BGA84 (x16)</td>
<td>DDR2-667/800/1066</td>
</tr>
<tr>
<td>DDR1</td>
<td>512Mbit, 1Gbit</td>
<td>x4, x8, x16</td>
<td>2.5V</td>
<td>FBGA60 or TSOP66</td>
<td>DDR3-333/400</td>
</tr>
<tr>
<td>Mobile DDR</td>
<td>512Mbit, 1Gbit, 2Gbit</td>
<td>x16, x32 (only 2G)</td>
<td>1.8V</td>
<td>FBGA60 (x16), FBGA90 (x32)</td>
<td>DDR3-333/400</td>
</tr>
</tbody>
</table>

eXtra-Robust I'M ECC DRAM with integrated error correction

<table>
<thead>
<tr>
<th>Technology</th>
<th>Capacities</th>
<th>Organizations</th>
<th>Voltage options</th>
<th>Package</th>
<th>Speed Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR3</td>
<td>512Mbit, 1Gbit</td>
<td>x4, x8, x16</td>
<td>1.5V, 1.35V</td>
<td>FBGA78 (x4, x8), FBGA96 (x16)</td>
<td>DDR3-1333/1600/1866</td>
</tr>
<tr>
<td>DDR2</td>
<td>512Mbit, 1Gbit</td>
<td>x4, x8, x16</td>
<td>1.8V</td>
<td>BGA60 (x4, x8), BGA84 (x16)</td>
<td>DDR2-667/800/1066</td>
</tr>
<tr>
<td>DDR1</td>
<td>512Mbit, 1Gbit</td>
<td>x4, x8, x16</td>
<td>2.5V</td>
<td>FBGA60 or TSOP66</td>
<td>DDR3-333/400</td>
</tr>
<tr>
<td>Mobile DDR</td>
<td>512Mbit, 1Gbit</td>
<td>x16, x32 (only 1G)</td>
<td>1.8V</td>
<td>FBGA60 (x16), FBGA90 (x32)</td>
<td>DDR3-333/400</td>
</tr>
</tbody>
</table>

Part No. Decoder

- IM: Intelligent Memory
- E: = integrated ECC
- 1G: = extra Robustness
- 16: = integrated ECC

IC capacity
- S1: = 512 Megabit
- 1G: = 1 Gigabit
- 2G: = 2 Gigabit

DRAM I/O width
- 08 = x8
- 16 = x16
- 32 = x32

Memory Type
- D1 = DDR1
- D2 = DDR2
- D3 = DDR3
- D4 = Mobile DDR

Voltage
- C = 3.3V (DDR1)
- D = 1.8V (DDR2, Mobile DDR)
- E = 1.5V (DDR3)
- F = 1.35V (DDR4/L, 1.5V tolerant)

IC Revision
- E = Revision E (initial version for ECC products)

Automotive (AEC-Q100) Option
- Blank = Standard Grade
- A = Automotive Grade (AEC-Q100)

Temperature range
- For DDR1 and Mobile DDR: Blank = Commercial Temperature (0°C to +70°C) TA
- I = Industrial Temperature (-40°C to +85°C) TA

For DDR2 and DDR4:
- Blank = Commercial Temperature (0°C to +85°C) TCase
- I = Industrial Temperature (-40°C to +85°C) TCase

Note: Double-Refresh rate required for operation >85°C TCase

For all types (available upon special request):
- H = High Temperature -40°C to 105°C TA
- X = Extreme Temperature -40°C to 125°C TA

Speed Grade
- 6 = DDR1-333 (also for Mobile DDR)
- 5 = DDR1-400 (also for Mobile DDR)
- 4 = DDR2-667
- 25 = DDR2-800
- 18 = DDR2-1066
- 16 = DDR3-1333 CL9-9-9
- 125 = DDR3-1600 CL11-11-11
- 107 = DDR3-1866 CL13-13-13

RoHS-compliance
- G = Green / RoHS
- Blank = Leadless

Package
- T = TSOP
- E = FBGA
- D = FBGA DOP (2 separate Chip-Select lines)